Aluminum foil Lab
Density of $\mathrm{Al}=2.71 \mathrm{~g} / \mathrm{cm}^{3} \quad 1000 \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3}$

Foil type	Length (mm)	Width (mm)	Area $\left(\mathrm{mm}^{2}\right)$	Mass (grams)	Density $\left(\mathrm{g} / \mathrm{mm}^{3}\right)$	Volume $\left(\mathrm{mm}^{3}\right)$	Thickness (mm)
Light							
Light							
Light							
Heavy						Average thickness	
Heavy							
Heavy							

$25.4 \mathrm{~mm}=1$ inch
Find the average thickness of each foil in inches. Light foil $=$ \qquad Heavy foil = \qquad
What size square should give you most accurate results and why?

Graphs Using your data from the heavy aluminum foil, make two separate graphs.
On one graph the mass(y) verses volume (x)
On the other, graph the volume (y) verses area (x)
Title each graph and label axis using proper scaling.
Find the slope on each graph
State the physical meaning of each slope

				\|						

			I	\\|						

